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Abstract

In the accompanying paper, the suitability of a spectral super element to predict the response to point
force excitation, was demonstrated. This paper expands the element formulation to also include distributed
forces, which is useful when studying distributed excitation. First the sensitivity function, i.e. the structural
response to a travelling pressure wave, is found. This sensitivity function and a wavenumber frequency
description of the wall pressure are then used to predict the response of a turbulence excited panel in a
numerically efficient way. The predictions were validated by a conventional finite element method and also
compared to measurements.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The noise generated by turbulent boundary layer (TBL) flow over the surface of fast moving
vehicles such as aircraft, trains and ships, remains a source of annoyance. These vehicles are often
very large, whereas the length and time scales of the excitation may be comparatively small, which
often implies impossibly large computer models for the prediction of noise and vibration.
One advantage, when modelling these vehicles, is that they are often built up of simpler

structures, such as curved plates. The spectral super element method (SSEM) in the accompanying
paper [1] was developed to handle exactly this type of structures and to predict the structural
see front matter r 2004 Elsevier Ltd. All rights reserved.
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vibration with a high computational efficacy. The spectral super elements can also be put into an
assembly with conventional finite elements, which is convenient whenever small and more
complicated parts, e.g. stringers and frames, are modelled with such elements instead.
With the finite element method, a distributed force is sometimes a bit carelessly considered as a

set of point forces acting on the structure. This approximation will usually not cause much error
as long as the force is a slowly varying function over each finite element. With the SSEM,
however, this is not a possible approach as the force will normally vary to a great extent over the
surface of these relatively large elements. In this paper, the theory of Part 1 is extended to handle
distributed forces, which is advantageous as it increases the applicability of the method greatly.
More specifically, the structural response to a travelling pressure wave derived here is also

referred to as the sensitivity function of the structure by Newland [2] and Lin [3]. Once found, it
can be used to efficiently predict the structural response to homogeneous, stationary, random
excitation, namely as an integral of the cross-spectral density of the excitation and the sensitivity
function in the wavenumber domain. This fact has been used successfully before in for example
Refs. [4–6] to predict turbulence-induced vibration and will be explored here in conjunction with
the developed spectral super element.
Two models will be used to describe the wall pressure excitation of a turbulent boundary

layer flow in this paper, a Chase [7] and a Corcos model [8], both modified as presented
in Ref. [9]. These two models differ mainly in the way they describe the low wavenumber domain
of the TBL, which in turn implies differences in predicted structural response above a certain
frequency. This difference is discussed in more detail in Ref. [9] and will only be mentioned
briefly here.
The paper starts with an element formulation for a distributed force and then derives the

sensitivity function. This sensitivity function is validated against an exact spectral finite element
method (SFEM) and then used to predict the response to turbulence excitation. Finally, these
results are validated against predictions using a detailed finite element method and also against
measurements in a wind tunnel.
2. Element formulation for a distributed force

In this section the sensitivity function is derived. It is the structural response of the structure to
a travelling pressure wave.

2.1. Displacement functions

Consider a plate of length Lx and width Ly that is located in the xy plane. It is excited by a
distributed force of the form of a travelling pressure wave

pðx; y; tÞ ¼ p0 e
�iaxxe�iayyeiot, (1)

where ax;y are wavenumbers, o is angular frequency and p0 is pressure amplitude. The structural
response to this pressure is given by a homogeneous solution and a particular solution. The
homogeneous solution is detailed in Ref. [1, Eq. (23)] and the particular solution is derived in
what follows. To that end, the virtual work of a distributed force is included in the Lagrangian
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[1, Eqs. (16) and (33)]

L ¼

Z Z
eaTC e � o2rh uaTu� p�w � pwa dydx

¼

Z X2
m¼0

X2
n¼0

qmVaT

qxm
emn

qnV

qxn
� o2VaTm00Vdx

þ

Z Z
�p�w � pwa dydx, ð2Þ

where r and h are density and thickness of the plate, respectively. C is the rigidity matrix and
vector e contains the components of strain, which are linear functionals of the displacement u and
its spatial derivatives. emn and m00 are assembled matrices from Ref. [1, Eq. (15)]. The components
of V are the nodal dof at the element ends. Similar to Part 1, the plate is subdivided into a number
of plate strips. In each strip element j, the dependence of the displacement in the z-direction is
described by a vector of polynomials f and is a linear function of the nodal dof VjðxÞ [1, Eq. (8)]

wjðx; yÞ ¼ f CwVjðxÞ, (3)

where f ¼ ð1 y=ly ðy=lyÞ
2

ðy=lyÞ
3
Þ and the projection matrix Cw is defined in Ref. [1, Eq. (11)].

Substituting Eqs. (3) and (1) into Eq. (2), it is possible to element wise evaluate the integral with
respect to y asZ Z

�p�w � pwa dy dx ¼

Z lx

�lx

ð�P�TðayÞVðxÞ � VaTðxÞPðayÞÞe
�iaxx dx, (4)

where PðayÞ is found from assembling PjðayÞ below from each strip element

PjðayÞ ¼ e�iayyjCT
w

Z ly

�ly

fTe�iayy dy. (5)

yj is the location of the elements local coordinate system with respect to the global. If the local
coordinate system is shifted also in the x-direction, this has to be accounted for in Eq. (4). The
integral Eq. (5) is evaluated exactly without any need for numerical quadrature.
If the displacement of the adjoint system VaT is varied in the Lagrangian (2), the following

equation of motion is found

A4
q4

qx4
þ A2

q2

qx2
þ A1

q
qx

þ A0 � o2M

� �
VðxÞ ¼ PðayÞe

�iaxx, (6)

where Ai are given by [1, Eq. (18)]

A4 ¼ e22; A2 ¼ e02 � e11 þ e20; A1 ¼ e01 � e10; A0 ¼ e00; M ¼ m00.

It follows that the particular solution is given by

Vpðx; ax; ayÞ ¼ Cðax; ayÞe
�iaxx, (7)

where

C ¼ ðA4ð�iaxÞ
4
þ A2ð�iaxÞ

2
þ A1ð�iaxÞ þ A0 � o2MÞ

�1PðayÞ. (8)
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Adding the homogeneous solution, derived in Part 1, and the particular solution, the displacement
in the waveguide can be expressed as a function of the nodal displacementW in a similar fashion
as described in Ref. [1, Section 3.1],

VðxÞ ¼ UEðxÞAðW�WpÞ þ VpðxÞ, (9)

where the components of Wp are the values of the particular solution and its derivative at the
nodes of the element, given by

Wp ¼

B1Vpð�lxÞ

B2ð�iaxÞVpð�lxÞ

B3VpðþlxÞ

B4ð�iaxÞVpðþlxÞ

0
BBBB@

1
CCCCA. (10)

Bi; U and A are detailed in the companion paper [1]. The entries of the diagonal matrix E are
given by

ðEÞii ¼ ekiix�ðkpÞii lx , (11)

where k is a diagonal matrix of eigenvalues and kp is a scaling matrix, see Ref. [1, Eq. (21)].
2.2. Sensitivity function

The displacement functions are expressed by Eq. (9). Similarly, the complex conjugate of the
displacement functions for the adjoint system are by symmetry given as

VaðxÞ ¼ UEðxÞAðWa �Wa
pÞ þ Va

pðxÞ, (12)

where Wa
p and Va

p are found in the same way in the previous section. The Lagrangian (2) is
evaluated by substituting the components of V and Va into it.

L ¼

Z lx

�lx

X2
m¼0

X2
n¼0

WaTAT q
mEðxÞ

qxm
UTemn

qn

qxn
ðUEðxÞAðW�WpÞ þ Ce�iaxxÞ

� o2WaTATEðxÞUTm00ðUEðxÞAðW�WpÞ þ Ce�iaxxÞ

�WaTATEðxÞUTPðayÞe
�iaxx dx þ R

¼WaTDW�WaTF1 �WaTF2 �WaTF3 þ R, ð13Þ

where R contains terms that do not depend on the variational parameterWa and are of no interest
here. Furthermore,

F1 ¼ DWp, (14)

F2 ¼ �AT
ðHax

: � EIax
Þ, (15)

F3 ¼ AT
ðUTPðayÞ: � EIax

Þ, (16)
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Hax
¼

X2
m¼0

X2
n¼0

ðkmðUTemnCÞð�iaxÞ
n
Þ � o2ðUTm00CÞ

 !
, (17)

EIax
¼

Z lx

�lx

ðdiagEðxÞÞe�iaxx dx. (18)

The dynamic stiffness matrix D is given by Ref. [1, Eq. (29)]. The operator diag produces a
column vector from its arguments main diagonal and .* denotes element wise multiplication. The
integral in Eq. (18) is evaluated analytically as in Ref. [4, Eq. (A7)]. By requiring that the first
variation of this Lagrangian with respect to the variational parameter is zero, a system of
equations for the nodal displacement W is found,

DW ¼ F, (19)

where the nodal force vector F is given by

F ¼ F1 þ F2 þ F3. (20)

The dynamic stiffness matrix D does not depend on the excitation and for a general source,
described by a superposition of pressure wave excitations, it is therefore only the nodal force
vector that needs to be recalculated.
Solving Eq. (19) gives the nodal displacements W of the structure, when excited by a pressure

wave p0e
�iaxxe�iayy: The displacement within the element is then described by Eq. (9) and for

future reference, the response to a pressure wave with p0 ¼ 1N=m2 will here be denoted by the
sensitivity function G. This function may, similar to Newland [2, Chapter 16], also be expressed as
an integral

Gðr; ax; ay;oÞ ¼
Z

S

Hðr; s;oÞ e�iaxxse�iayys ds, (21)

where r ¼ ðx; yÞ and s ¼ ðxs; ysÞ: S is the surface of the structure and Hðr; s;oÞ represents the
response at location r to a harmonic point load of unit magnitude at location s:

2.3. Validation of sensitivity function

In order to validate the previously derived element formulation (19), a comparison was made to
the results from an exact spectral finite element [4]. The geometric and material properties of the
investigated plate is described in Section 4.1. The damping was here described by a complex
Young’s modulus, Eð1þ iZÞ; with Z equal to 0.02. The plate was chosen to be simply supported,
since, similar to an exact dynamic stiffness method [10], the exact spectral finite element [4]
requires at least two opposite edges to be simply supported.
Fig. 1 shows the velocity response of the plate at a point (Lx=4; 3Ly=9), when excited by a

travelling pressure wave (1) with ax ¼ 2:5m�1 and ay ¼ 3m�1: The results with the SSEM and
SFEM agree very well, except above 900Hz, where a small error is noticeable, which then grows
above 1500Hz. Around these two frequencies, the fifth- and sixth-order transverse modes cut on
and with only nine assembled element strips used in the SSEM, these transverse modes could only
be approximated. With more elements, on the other hand, the convergence of the results was
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Fig. 1. Velocity response of simply supported plate excited by a travelling pressure wave with ax ¼ 2:5m�1; ay ¼ 3m�1:
Solid, exact solution with an exact SFEM; dashed, SSEM; dotted, SSEM with only homogeneous solution.
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verified. The figure also shows the result obtained if the particular solution is ignored in the
element formulation. Ignoring this part of the solution simplifies the formulation greatly, e.g. F1

and F2 are then zero in Eq. (20). However, this approach can lead to significant errors especially
within the element as shown in the figure and is not to be recommended.
3. Vibrational response to TBL excitation

3.1. Response to distributed random excitation

The response to distributed random excitation is given by Newland [2] as

Swwðr1; r2Þ ¼

Z
S

Z
S

H�ðr1; s1;oÞHðr2; s2;oÞ Sppðs1; s2;oÞds1 ds2, (22)

where the cross-spectral densities of the response and the pressure are defined by

Swwðr1; r2;oÞ ¼ hw�ðr1;oÞ;wðr2;oÞi,

Sppðs1; s2;oÞ ¼ hp�ðs1;oÞ; pðs2;oÞi. ð23Þ

h i denotes statistical expectation. If the distributed excitation pðs;oÞ is assumed to be a sample
function from a process, which is stationary and homogeneous in space, Sppðs1; s2;oÞ is a function
of only the frequency and the spatial separations,

xx ¼ xs1 � xs2 and xy ¼ ys1 � ys2. (24)
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3.2. Cross-spectral density of the pressure

Two different models will be used to describe the cross-spectral density of the pressure. They
describe the wall pressure in a similar way around the convective peak, which is when the
wavenumber in the streamwise direction equals the convective wavenumber. This convective
wavenumber is defined by kc ¼ o=Uc; where Uc is the convection velocity. In the low
wavenumber domain, however, the models differ significantly. As discussed in Ref. [9], this affects
the structural response above the aerodynamic coincidence frequency. Hence, it is important to
choose the model that not only describes the measured wall pressure field, but also enables
accurate predictions of the structural response.
3.2.1. Modified Corcos’ model
The pressure cross-spectrum is described by Corcos’ model [8]

Sppðxx; xy;oÞ ¼ FppðoÞ e�cx o jxxj=Uc e�cyojxyj=Uc ei oxx=Uc , (25)

where Fpp is the wall pressure power spectral density. cx and cy describe the spatial coherence of
the wall pressure field in the longitudinal and transverse directions, respectively. In this work
experimentally determined values as function of frequency were used for Fpp; cx; cy and Uc [9].
Thus, the model was made frequency and flow speed dependent in a similar way to Efimtsov’s
model [11]. The measured values for cx and cy were in fact described quite well by Efimtsov’s
model above 1000Hz for the structure investigated here, see Ref. [9].
3.2.2. Modified Chase’s model
Chase’s model is believed to describe the low-wavenumber domain better than Corcos’ model,

which is important for the response prediction at higher frequencies. Chase’s original model [7,
Eqs. (72–74)] gave a reasonable description of the measured cross-correlation. However, as a
slightly modified pressure cross-spectrum found in Ref. [9] provided a better agreement to the
measurements, it will be used instead. For this modified model two more parameters, gM and gT ;
were introduced to better fit the transverse length scale to measurements. Furthermore, the
relation between the term describing the self-noise and the one describing the shear noise was
made frequency and flow speed dependent.

Sppðxx; xy;oÞ ¼ FppðoÞfAMðo;UcÞfMðxx; xy;oÞe
�zMei kc xx

þAT ðo;UcÞfT ðxx; xy;oÞe
�zT ei kc xxg, ð26Þ

where

fM ¼ 1þ zM þ a2Mm2Mð1� z2M1=zMÞ þ 2iaM mM zM1, (27)

fT ¼ 1þ zT þ a2Tg
2
T ð1� z2T2=zT Þ þ a2T m2T ð1� z2T1=zT Þ þ 2iaT mT zT1. (28)

zM1 ¼ mMaMkcxx; zT1 ¼ mTaT kcxx, (29)

zM2 ¼ gMaMkcxy; zT2 ¼ gTaT kcxy, (30)



ARTICLE IN PRESS

F. Birgersson, S. Finnveden / Journal of Sound and Vibration 287 (2005) 315–328322
aM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbM kc dÞ

�2

q
; aT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbT kc dÞ

�2

q
, (31)

zM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2M1 þ z2M2

q
; zT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2T1 þ z2T2

q
. (32)

The following model for the relative magnitudes AM;T was postulated [9]

AMðo;UcÞ ¼ ð1� rÞ=ð1þ a2Mm2MÞ,

AT ðo;UcÞ ¼ r=ð1þ a2Tg
2
T þ a2Tm

2
T Þ ð33Þ

with

rðo;UcÞ ¼ aðUcÞ � bðUcÞo=o0; o0 ¼ 105½rad=s. (34)

r is restricted to take values between zero and one. The non-dimensional parameters mM ; mT ; gM ;
gT ; bT ; bM ; a and b are determined as in Ref. [9] and are listed in Table 1 together with the
boundary layer thickness d: The values for bT and bM are similar to the default values given by
Chase [7, Eq. (86)], whereas mM is almost twice as large and mT approximately three times smaller.
This changes the length scales in the spanwise and streamwise directions, which is discussed
further in Ref. [9]. It is noticeable that the parameters are all frequency independent and that only
a; b and d depend on the flow speed.

3.2.3. Wavenumber description
The cross-spectral density of the pressure can be expressed as an exponential Fourier series. The

period of the exponential Fourier series has to be taken as at least twice the length and width of
the plate, because integral (22) of xsi and ysi is over the length and width of the structure and thus
xx and xy need to be evaluated in the interval �Lx . . .Lx and �Ly . . .Ly; respectively. Outside this
interval the cross-spectral density can be made periodic as any existing pressure outside the
integration limits will not affect the result. Upon this basis the cross-spectral density is given by

Sppðs1; s2;oÞ ¼ FppðoÞ
X1

m¼�1

X1
n¼�1

SPPðam; anÞe
iamxxeianxy , (35)

where

am ¼ 2pm=2Lx; an ¼ 2pn=2Ly. (36)

The Fourier series coefficients SPPðam; anÞ can be found analytically for Corcos’ model, as in Ref.
[4, Eqs. (39) and (40)]. It is however also possible to find these coefficients numerically with a 2D
fast Fourier transform (FFT). This procedure is more general, as any type of description for the
Table 1

Parameters for modified Chase model

aa ba da bM bT mM mT gM gT

0.5928 0.1355 50 mm 0.5973 0.3158 0.2831 0.0614 1.2267 1.4186

aa; b and d depend on flow speed; here values for 100m/s are shown.
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cross-spectral density of the pressure can be used, as long as it is a continuous function. In order
to find the coefficients, the following integral is to be evaluated

SPPðam; anÞ ¼
1

2Lx

1

2Ly

Z Lx

�Lx

Z Ly

�Ly

Sppðxx; xyÞ

FppðoÞ
e�iamxxe�ianxy dxy dxx, (37)

where Sppðxx; xyÞ is defined by either Eq. (25) or Eq. (26). Dividing the area into M 0 and N 0

segments and using a trapezoidal approximation to the integral, yields

SPPðam; anÞ �
Dx

2Lx

Dy

2Ly

eiamLxeianLy

�
XM 0

m0¼0

XN 0

n0¼0

a0ma0
nSppð�Lx þ m0Dx;�Ly þ n0DyÞe

�iamm0Dxe�iann0Dy , ð38Þ

where Dx ¼ 2Lx=ðM
0Þ and Dy ¼ 2Ly=ðN

0Þ: a0m is unity if not m0 ¼ 0 or m0 ¼ M 0; in which case it is
1
2
: A similar relation holds for a0

n: The double sum is on a form that can be evaluated efficiently
using an FFT, implemented in for example MATLAB. Due to possible aliasing distortion, it is
important to choose M 0 and N 0 large enough at a given frequency.

3.3. Cross-spectral density of the response

The series in Eq. (35) is inserted into integral (22) and the order of summation and integration
interchanged

Swwðr1; r2;oÞ ¼ FppðoÞ
X

m

X
n

SPPðam; anÞ

�

Z
S

Z
S

ðHðr1; s1;oÞe�iamxs1e�ianys1Þ
�
ðHðr2; s2;oÞe�iamxs2e�ianys2Þds1 ds2

¼ FppðoÞ
X

m

X
n

SPPðam; anÞG
�ðr1; am; an;oÞGðr2; am; an;oÞ. ð39Þ

The definitions of the sensitivity function in Eq. (21) was used. This function describes the
response to a travelling pressure wave and was previously calculated with the SSEM in Section 2.
Considering only the auto-spectral density of the response at location r gives specifically

Swwðr; r;oÞ ¼ FppðoÞ
X

m

X
n

SPPðam; anÞjGðr; am; an;oÞj2. (40)
4. Validation and comparison with measurements

In this section, predictions, obtained with the presented model, are compared to the results
from a detailed conventional FE model and also to experimental results from wind tunnel
measurements at the MWL in Stockholm.
The anechoic wind tunnel was designed to minimize acoustic contamination as described in

Ref. [9] and assessed in Ref. [12]. The plate acceleration was measured at five different locations
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by light weight accelerometers attached to the plate, whereas the cross-spectral density of the wall
pressure was measured with two spatially separated 1/8-inch microphones, see Ref. [9].

4.1. Measurement setup

A number of wind tunnel measurements were made for flow speeds ranging from 80 up to
120m/s, but for brevity only the results for 100m/s will be discussed here. Similar trends were also
observed for the other flow speeds. Three different plate structures could be flush-mounted in a
test section located in a reverberation chamber. One of them was described in Ref. [1] as test case
(b) and another was a clamped plate with damping patches attached to it.
The plate studied here was a clamped aluminum plate with a length Lx of 76.8 cm, a width Ly of

32.8 cm, a thickness h of 1.6mm, a Young’s modulus E of 7e10N=m2; a density r of 2700kg=m3

and a Poisson ratio equal to 0.33. With the wind tunnel in use at different flow speeds, a shaker
was used to make the plate vibrate at levels far exceeding those caused by the turbulence. The
shaker was then turned off and from measuring the decay in vibration, the plate loss factors in
octave bands could be determined and are given in Table 2. This damping was included in the
element formulation with a complex Young’s modulus Eð1þ iZÞ; where Z for a given frequency
was found as a linear interpolation between the measured octave band values for the loss factors.

4.2. Vibration response

A non-dimensional metric R for the response of the plate was defined in order to compare the
vibration response to turbulence excitation

R ¼
o2r2h2Svv

Fpp

, (41)

where r and h are density and thickness of the plate, respectively. Svv is the cross-spectral density
of the velocity. The response calculated and discussed here is an average of the response at five
positions of the plate, see Table 3. For the SSEM, 18 strip elements were used in the derivation of
one super element.
The presented method was validated against results provided by Ulf Tengzelius (FOI) using a

finite element method with 56� 24 elements and Eq. (22). Fig. 2 shows the result for the metric R.
For this special figure a Young’s modulus of 6:6e10N=m2 and a Poisson ratio of 0.31 was used.
The frequency resolution was only 3Hz, which is too wide to completely resolve the resonances at
low frequencies. Both methods used the modified Corcos model and the results show good
agreement.
Table 2

Measured loss factor for a flow speed of 100m/s

Octave band (Hz) 125 250 500 1000 2000

Loss factor 0.045 0.006 0.006 0.005 0.003
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Table 3

Positions of measured and predicted plate response

x (m) 0.134 0.224 0.334 0.499 0.634

y (m) 0.284 0.089 0.184 0.229 0.119

Note: Plate is located in the xy plane with the origin placed in one corner.
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Fig. 2. Non-dimensional vibration response for a clamped plate excited by turbulent flow with a free flow velocity of

100m/s. Solid line, FEM calculations; dashed line, presented method.
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Figs. 3 and 4 compare the calculated and measured metric R for a free flow velocity of 100m/s
in narrow-bands of width 6.25Hz. The frequency resolution with the SSEM was less than 0.5Hz
at low frequencies. This ensured that the resonance peaks were resolved, before integrating to the
6.25Hz bandwidth. As can be seen there is a similar good agreement between measurements and
predictions with both the Corcos- and Chase-like models up to around 800Hz. The reason for this
being that they model the wavenumber domain close to the convective peak [9] in a similar
fashion. Thus, as long as the frequency is around the aerodynamic coincidence frequency, which
for the investigated case was at 370Hz, the predicted response will not differ much. However,
above this frequency, the low wavenumber description of the wall pressure becomes increasingly
important for the response. For example as discussed in Refs. [9,13], Chase’s model seems to
model this domain better. Fig. 5 compares the results of Figs. 3 and 4 in third octave bands and an
average difference of 3 dB was found using the modified Chase model. To the authors’ knowledge
this accuracy of the predicted plate response to TBL excitation is one of the best to be found in the
literature so far.
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Fig. 3. Non-dimensional vibration response for a clamped plate excited by turbulent flow with a free flow velocity of

100m/s. Solid line, measurements; dotted line, predictions with the SSEM using a modified Corcos model.
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Fig. 4. Non-dimensional vibration response for a clamped plate excited by turbulent flow with a free flow velocity of

100m/s. Solid line, measurements; dashed line, predictions with the SSEM using a modified Chase model.
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A 3mm static deflection of the plate, caused by a static pressure difference between the
inside and outside of the tunnel, was observed for a free flow velocity of 100m/s. This introduced
a pre-stress Nx;y in the x- and y-direction of the plate, which was modelled using Nx;y �
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Fig. 5. Non-dimensional vibration response in 1/3-octave bands. Solid, measurements; dashed, results based on

modified Chase; dotted, results based on modified Corcos.
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2Ehð0:003mÞ
2=L2

x;y: The effect of this pre-stress for the response predictions was mainly to shift the
resonance frequencies slightly upwards, especially at lower frequencies. For the third octave band
power, however, the effect was only of the order of one dB or less and therefore these results are
not commented on further here. Other possible errors in the model exist, e.g. the neglect of
curvature and uncertain boundary conditions. The estimated damping loss factor will also contain
errors that contribute to the overall error. Although work has been done to extend the study to
include other types of boundaries and account for the curvature of the plate, more work
undoubtedly remains, if the model is to become even more accurate.
5. Conclusion

In this paper, the spectral super element formulation presented in an accompanying paper was
extended to account for distributed forces and then validated against an exact spectral finite
element method. The response to a travelling pressure wave was then used in combination with a
wavenumber frequency description of the wall pressure field to predict the TBL induced response
of a clamped plate. The formulation was validated against a detailed conventional FE model,
showing an excellent agreement. Modified Corcos- and Chase-like models were derived in a
previous paper [9] in order to model the measured wall pressure data. With both these models
quite a good agreement to measured plate response was obtained close to and below the
aerodynamic coincidence, whereas the modified Chase model provided a better agreement at high
frequencies.
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